Merge remote-tracking branch 'origin/master' into generic_judgements_2

Conflicts:
	osu.Desktop.VisualTests/Tests/TestCaseHitObjects.cs
	osu.Game.Modes.Catch/UI/CatchHitRenderer.cs
	osu.Game.Modes.Mania/UI/ManiaHitRenderer.cs
	osu.Game.Modes.Mania/osu.Game.Modes.Mania.csproj
	osu.Game.Modes.Osu/Objects/Drawables/DrawableSlider.cs
	osu.Game.Modes.Osu/Objects/Drawables/DrawableSpinner.cs
	osu.Game.Modes.Osu/UI/OsuHitRenderer.cs
	osu.Game.Modes.Taiko/UI/TaikoHitRenderer.cs
	osu.Game.Modes.Taiko/osu.Game.Modes.Taiko.csproj
	osu.Game/Modes/Objects/Drawables/DrawableHitObject.cs
	osu.Game/Modes/UI/HitRenderer.cs
	osu.Game/osu.Game.csproj
This commit is contained in:
smoogipooo
2017-03-15 21:36:43 +09:00
70 changed files with 845 additions and 371 deletions

View File

@ -1,150 +0,0 @@
// Copyright (c) 2007-2017 ppy Pty Ltd <contact@ppy.sh>.
// Licensed under the MIT Licence - https://raw.githubusercontent.com/ppy/osu/master/LICENCE
using System.Collections.Generic;
using OpenTK;
namespace osu.Game.Modes.Osu.Objects
{
public class BezierApproximator
{
private int count;
private List<Vector2> controlPoints;
private Vector2[] subdivisionBuffer1;
private Vector2[] subdivisionBuffer2;
private const float tolerance = 0.25f;
private const float tolerance_sq = tolerance * tolerance;
public BezierApproximator(List<Vector2> controlPoints)
{
this.controlPoints = controlPoints;
count = controlPoints.Count;
subdivisionBuffer1 = new Vector2[count];
subdivisionBuffer2 = new Vector2[count * 2 - 1];
}
/// <summary>
/// Make sure the 2nd order derivative (approximated using finite elements) is within tolerable bounds.
/// NOTE: The 2nd order derivative of a 2d curve represents its curvature, so intuitively this function
/// checks (as the name suggests) whether our approximation is _locally_ "flat". More curvy parts
/// need to have a denser approximation to be more "flat".
/// </summary>
/// <param name="controlPoints">The control points to check for flatness.</param>
/// <returns>Whether the control points are flat enough.</returns>
private static bool isFlatEnough(Vector2[] controlPoints)
{
for (int i = 1; i < controlPoints.Length - 1; i++)
if ((controlPoints[i - 1] - 2 * controlPoints[i] + controlPoints[i + 1]).LengthSquared > tolerance_sq * 4)
return false;
return true;
}
/// <summary>
/// Subdivides n control points representing a bezier curve into 2 sets of n control points, each
/// describing a bezier curve equivalent to a half of the original curve. Effectively this splits
/// the original curve into 2 curves which result in the original curve when pieced back together.
/// </summary>
/// <param name="controlPoints">The control points to split.</param>
/// <param name="l">Output: The control points corresponding to the left half of the curve.</param>
/// <param name="r">Output: The control points corresponding to the right half of the curve.</param>
private void subdivide(Vector2[] controlPoints, Vector2[] l, Vector2[] r)
{
Vector2[] midpoints = subdivisionBuffer1;
for (int i = 0; i < count; ++i)
midpoints[i] = controlPoints[i];
for (int i = 0; i < count; i++)
{
l[i] = midpoints[0];
r[count - i - 1] = midpoints[count - i - 1];
for (int j = 0; j < count - i - 1; j++)
midpoints[j] = (midpoints[j] + midpoints[j + 1]) / 2;
}
}
/// <summary>
/// This uses <a href="https://en.wikipedia.org/wiki/De_Casteljau%27s_algorithm">De Casteljau's algorithm</a> to obtain an optimal
/// piecewise-linear approximation of the bezier curve with the same amount of points as there are control points.
/// </summary>
/// <param name="controlPoints">The control points describing the bezier curve to be approximated.</param>
/// <param name="output">The points representing the resulting piecewise-linear approximation.</param>
private void approximate(Vector2[] controlPoints, List<Vector2> output)
{
Vector2[] l = subdivisionBuffer2;
Vector2[] r = subdivisionBuffer1;
subdivide(controlPoints, l, r);
for (int i = 0; i < count - 1; ++i)
l[count + i] = r[i + 1];
output.Add(controlPoints[0]);
for (int i = 1; i < count - 1; ++i)
{
int index = 2 * i;
Vector2 p = 0.25f * (l[index - 1] + 2 * l[index] + l[index + 1]);
output.Add(p);
}
}
/// <summary>
/// Creates a piecewise-linear approximation of a bezier curve, by adaptively repeatedly subdividing
/// the control points until their approximation error vanishes below a given threshold.
/// </summary>
/// <returns>A list of vectors representing the piecewise-linear approximation.</returns>
public List<Vector2> CreateBezier()
{
List<Vector2> output = new List<Vector2>();
if (count == 0)
return output;
Stack<Vector2[]> toFlatten = new Stack<Vector2[]>();
Stack<Vector2[]> freeBuffers = new Stack<Vector2[]>();
// "toFlatten" contains all the curves which are not yet approximated well enough.
// We use a stack to emulate recursion without the risk of running into a stack overflow.
// (More specifically, we iteratively and adaptively refine our curve with a
// <a href="https://en.wikipedia.org/wiki/Depth-first_search">Depth-first search</a>
// over the tree resulting from the subdivisions we make.)
toFlatten.Push(controlPoints.ToArray());
Vector2[] leftChild = subdivisionBuffer2;
while (toFlatten.Count > 0)
{
Vector2[] parent = toFlatten.Pop();
if (isFlatEnough(parent))
{
// If the control points we currently operate on are sufficiently "flat", we use
// an extension to De Casteljau's algorithm to obtain a piecewise-linear approximation
// of the bezier curve represented by our control points, consisting of the same amount
// of points as there are control points.
approximate(parent, output);
freeBuffers.Push(parent);
continue;
}
// If we do not yet have a sufficiently "flat" (in other words, detailed) approximation we keep
// subdividing the curve we are currently operating on.
Vector2[] rightChild = freeBuffers.Count > 0 ? freeBuffers.Pop() : new Vector2[count];
subdivide(parent, leftChild, rightChild);
// We re-use the buffer of the parent for one of the children, so that we save one allocation per iteration.
for (int i = 0; i < count; ++i)
parent[i] = leftChild[i];
toFlatten.Push(rightChild);
toFlatten.Push(parent);
}
output.Add(controlPoints[count - 1]);
return output;
}
}
}

View File

@ -1,99 +0,0 @@
// Copyright (c) 2007-2017 ppy Pty Ltd <contact@ppy.sh>.
// Licensed under the MIT Licence - https://raw.githubusercontent.com/ppy/osu/master/LICENCE
using OpenTK;
using osu.Framework.MathUtils;
using System;
using System.Collections.Generic;
namespace osu.Game.Modes.Osu.Objects
{
public class CircularArcApproximator
{
private Vector2 a;
private Vector2 b;
private Vector2 c;
private int amountPoints;
private const float tolerance = 0.1f;
public CircularArcApproximator(Vector2 a, Vector2 b, Vector2 c)
{
this.a = a;
this.b = b;
this.c = c;
}
/// <summary>
/// Creates a piecewise-linear approximation of a circular arc curve.
/// </summary>
/// <returns>A list of vectors representing the piecewise-linear approximation.</returns>
public List<Vector2> CreateArc()
{
float aSq = (b - c).LengthSquared;
float bSq = (a - c).LengthSquared;
float cSq = (a - b).LengthSquared;
// If we have a degenerate triangle where a side-length is almost zero, then give up and fall
// back to a more numerically stable method.
if (Precision.AlmostEquals(aSq, 0) || Precision.AlmostEquals(bSq, 0) || Precision.AlmostEquals(cSq, 0))
return new List<Vector2>();
float s = aSq * (bSq + cSq - aSq);
float t = bSq * (aSq + cSq - bSq);
float u = cSq * (aSq + bSq - cSq);
float sum = s + t + u;
// If we have a degenerate triangle with an almost-zero size, then give up and fall
// back to a more numerically stable method.
if (Precision.AlmostEquals(sum, 0))
return new List<Vector2>();
Vector2 centre = (s * a + t * b + u * c) / sum;
Vector2 dA = a - centre;
Vector2 dC = c - centre;
float r = dA.Length;
double thetaStart = Math.Atan2(dA.Y, dA.X);
double thetaEnd = Math.Atan2(dC.Y, dC.X);
while (thetaEnd < thetaStart)
thetaEnd += 2 * Math.PI;
double dir = 1;
double thetaRange = thetaEnd - thetaStart;
// Decide in which direction to draw the circle, depending on which side of
// AC B lies.
Vector2 orthoAtoC = c - a;
orthoAtoC = new Vector2(orthoAtoC.Y, -orthoAtoC.X);
if (Vector2.Dot(orthoAtoC, b - a) < 0)
{
dir = -dir;
thetaRange = 2 * Math.PI - thetaRange;
}
// We select the amount of points for the approximation by requiring the discrete curvature
// to be smaller than the provided tolerance. The exact angle required to meet the tolerance
// is: 2 * Math.Acos(1 - TOLERANCE / r)
// The special case is required for extremely short sliders where the radius is smaller than
// the tolerance. This is a pathological rather than a realistic case.
amountPoints = 2 * r <= tolerance ? 2 : Math.Max(2, (int)Math.Ceiling(thetaRange / (2 * Math.Acos(1 - tolerance / r))));
List<Vector2> output = new List<Vector2>(amountPoints);
for (int i = 0; i < amountPoints; ++i)
{
double fract = (double)i / (amountPoints - 1);
double theta = thetaStart + dir * fract * thetaRange;
Vector2 o = new Vector2((float)Math.Cos(theta), (float)Math.Sin(theta)) * r;
output.Add(centre + o);
}
return output;
}
}
}

View File

@ -4,6 +4,7 @@
using System;
using System.Collections.Generic;
using OpenTK;
using osu.Game.Modes.Objects.Types;
namespace osu.Game.Modes.Osu.Objects.Drawables.Connections
{
@ -63,7 +64,7 @@ namespace osu.Game.Modes.Osu.Objects.Drawables.Connections
{
Vector2 startPosition = prevHitObject.EndPosition;
Vector2 endPosition = currHitObject.Position;
double startTime = prevHitObject.EndTime;
double startTime = (prevHitObject as IHasEndTime)?.EndTime ?? prevHitObject.StartTime;
double endTime = currHitObject.StartTime;
Vector2 distanceVector = endPosition - startPosition;

View File

@ -7,6 +7,7 @@ using osu.Framework.Graphics.Transforms;
using osu.Game.Modes.Objects.Drawables;
using osu.Game.Modes.Osu.Objects.Drawables.Pieces;
using OpenTK;
using osu.Game.Modes.Objects.Types;
namespace osu.Game.Modes.Osu.Objects.Drawables
{
@ -35,11 +36,11 @@ namespace osu.Game.Modes.Osu.Objects.Drawables
{
glow = new GlowPiece
{
Colour = osuObject.Colour
Colour = osuObject.ComboColour
},
circle = new CirclePiece
{
Colour = osuObject.Colour,
Colour = osuObject.ComboColour,
Hit = () =>
{
if (Judgement.Result.HasValue) return false;
@ -57,11 +58,11 @@ namespace osu.Game.Modes.Osu.Objects.Drawables
flash = new FlashPiece(),
explode = new ExplodePiece
{
Colour = osuObject.Colour,
Colour = osuObject.ComboColour,
},
ApproachCircle = new ApproachCircle
{
Colour = osuObject.Colour,
Colour = osuObject.ComboColour,
}
};
@ -116,13 +117,16 @@ namespace osu.Game.Modes.Osu.Objects.Drawables
ApproachCircle.FadeOut();
glow.Delay(osuObject.Duration);
double endTime = (osuObject as IHasEndTime)?.EndTime ?? osuObject.StartTime;
double duration = endTime - osuObject.StartTime;
glow.Delay(duration);
glow.FadeOut(400);
switch (state)
{
case ArmedState.Idle:
Delay(osuObject.Duration + TIME_PREEMPT);
Delay(duration + TIME_PREEMPT);
FadeOut(TIME_FADEOUT);
break;
case ArmedState.Miss:

View File

@ -60,7 +60,7 @@ namespace osu.Game.Modes.Osu.Objects.Drawables
Position = s.StackedPosition,
ComboIndex = s.ComboIndex,
Scale = s.Scale,
Colour = s.Colour,
ComboColour = s.ComboColour,
Sample = s.Sample,
}),
};
@ -72,7 +72,7 @@ namespace osu.Game.Modes.Osu.Objects.Drawables
AddNested(initialCircle);
var repeatDuration = s.Curve.Length / s.Velocity;
var repeatDuration = s.Curve.Distance / s.Velocity;
foreach (var tick in s.Ticks)
{
var repeatStartTime = s.StartTime + tick.RepeatIndex * repeatDuration;
@ -104,7 +104,7 @@ namespace osu.Game.Modes.Osu.Objects.Drawables
double progress = MathHelper.Clamp((Time.Current - slider.StartTime) / slider.Duration, 0, 1);
int repeat = slider.RepeatAt(progress);
progress = slider.CurveProgressAt(progress);
progress = slider.ProgressAt(progress);
if (repeat > currentRepeat)
{
@ -125,7 +125,7 @@ namespace osu.Game.Modes.Osu.Objects.Drawables
protected override void CheckJudgement(bool userTriggered)
{
if (!userTriggered && Time.Current >= HitObject.EndTime)
if (!userTriggered && Time.Current >= slider.EndTime)
{
var ticksCount = ticks.Children.Count() + 1;
var ticksHit = ticks.Children.Count(t => t.Judgement.Result == HitResult.Hit);
@ -162,7 +162,7 @@ namespace osu.Game.Modes.Osu.Objects.Drawables
ball.FadeIn();
Delay(HitObject.Duration, true);
Delay(slider.Duration, true);
body.FadeOut(160);
ball.FadeOut(160);

View File

@ -48,7 +48,7 @@ namespace osu.Game.Modes.Osu.Objects.Drawables
new Box
{
RelativeSizeAxes = Axes.Both,
Colour = sliderTick.Colour,
Colour = sliderTick.ComboColour,
Alpha = 0.3f,
}
};

View File

@ -46,7 +46,7 @@ namespace osu.Game.Modes.Osu.Objects.Drawables
Alpha = 0,
Anchor = Anchor.Centre,
Origin = Anchor.Centre,
DiscColour = s.Colour
DiscColour = s.ComboColour
},
circleContainer = new Container
{
@ -80,7 +80,7 @@ namespace osu.Game.Modes.Osu.Objects.Drawables
if (Progress >= 1)
disc.Complete = true;
if (!userTriggered && Time.Current >= HitObject.EndTime)
if (!userTriggered && Time.Current >= spinner.EndTime)
{
if (Progress >= 1)
{
@ -100,7 +100,7 @@ namespace osu.Game.Modes.Osu.Objects.Drawables
else
{
Judgement.Score = OsuScoreResult.Miss;
if (Time.Current >= HitObject.EndTime)
if (Time.Current >= spinner.EndTime)
Judgement.Result = HitResult.Miss;
}
}
@ -138,7 +138,7 @@ namespace osu.Game.Modes.Osu.Objects.Drawables
base.UpdateState(state);
Delay(HitObject.Duration, true);
Delay(spinner.Duration, true);
FadeOut(160);

View File

@ -51,7 +51,7 @@ namespace osu.Game.Modes.Osu.Objects.Drawables.Pieces
{
new Box
{
Colour = slider.Colour,
Colour = slider.ComboColour,
Alpha = 0.4f,
Width = width,
Height = width,

View File

@ -110,10 +110,10 @@ namespace osu.Game.Modes.Osu.Objects.Drawables.Pieces
{
progress -= border_portion;
bytes[i * 4] = (byte)(slider.Colour.R * 255);
bytes[i * 4 + 1] = (byte)(slider.Colour.G * 255);
bytes[i * 4 + 2] = (byte)(slider.Colour.B * 255);
bytes[i * 4 + 3] = (byte)((opacity_at_edge - (opacity_at_edge - opacity_at_centre) * progress / gradient_portion) * (slider.Colour.A * 255));
bytes[i * 4] = (byte)(slider.ComboColour.R * 255);
bytes[i * 4 + 1] = (byte)(slider.ComboColour.G * 255);
bytes[i * 4 + 2] = (byte)(slider.ComboColour.B * 255);
bytes[i * 4 + 3] = (byte)((opacity_at_edge - (opacity_at_edge - opacity_at_centre) * progress / gradient_portion) * (slider.ComboColour.A * 255));
}
}

View File

@ -0,0 +1,13 @@
// Copyright (c) 2007-2017 ppy Pty Ltd <contact@ppy.sh>.
// Licensed under the MIT Licence - https://raw.githubusercontent.com/ppy/osu/master/LICENCE
namespace osu.Game.Modes.Osu.Objects
{
public enum HitObjectType
{
Circle,
Slider,
Spinner,
SliderTick
}
}

View File

@ -1,15 +1,16 @@
// Copyright (c) 2007-2017 ppy Pty Ltd <contact@ppy.sh>.
// Licensed under the MIT Licence - https://raw.githubusercontent.com/ppy/osu/master/LICENCE
using System;
using osu.Game.Modes.Objects;
using OpenTK;
using osu.Game.Beatmaps;
using osu.Game.Modes.Osu.Objects.Drawables;
using osu.Game.Modes.Objects.Types;
using OpenTK.Graphics;
namespace osu.Game.Modes.Osu.Objects
{
public abstract class OsuHitObject : HitObject
public abstract class OsuHitObject : HitObject, IHasCombo, IHasPosition
{
public const double OBJECT_RADIUS = 64;
@ -36,6 +37,10 @@ namespace osu.Game.Modes.Osu.Objects
public abstract HitObjectType Type { get; }
public Color4 ComboColour { get; set; }
public virtual bool NewCombo { get; set; }
public int ComboIndex { get; set; }
public double HitWindowFor(OsuScoreResult result)
{
switch (result)
@ -62,23 +67,9 @@ namespace osu.Game.Modes.Osu.Objects
return OsuScoreResult.Miss;
}
public override void SetDefaultsFromBeatmap(Beatmap beatmap)
public virtual void SetDefaultsFromBeatmap(Beatmap<OsuHitObject> beatmap)
{
base.SetDefaultsFromBeatmap(beatmap);
Scale = (1.0f - 0.7f * (beatmap.BeatmapInfo.BaseDifficulty.CircleSize - 5) / 5) / 2;
}
}
[Flags]
public enum HitObjectType
{
Circle = 1 << 0,
Slider = 1 << 1,
NewCombo = 1 << 2,
Spinner = 1 << 3,
ColourHax = 122,
Hold = 1 << 7,
SliderTick = 1 << 8,
}
}

View File

@ -1,105 +0,0 @@
// Copyright (c) 2007-2017 ppy Pty Ltd <contact@ppy.sh>.
// Licensed under the MIT Licence - https://raw.githubusercontent.com/ppy/osu/master/LICENCE
using System;
using System.Collections.Generic;
using System.Globalization;
using osu.Game.Beatmaps.Samples;
using osu.Game.Modes.Objects;
using OpenTK;
namespace osu.Game.Modes.Osu.Objects
{
public class OsuHitObjectParser : HitObjectParser
{
public override HitObject Parse(string text)
{
string[] split = text.Split(',');
var type = (HitObjectType)int.Parse(split[3]);
bool combo = type.HasFlag(HitObjectType.NewCombo);
type &= (HitObjectType)0xF;
type &= ~HitObjectType.NewCombo;
OsuHitObject result;
switch (type)
{
case HitObjectType.Circle:
result = new HitCircle
{
Position = new Vector2(int.Parse(split[0]), int.Parse(split[1]))
};
break;
case HitObjectType.Slider:
CurveTypes curveType = CurveTypes.Catmull;
double length = 0;
List<Vector2> points = new List<Vector2> { new Vector2(int.Parse(split[0]), int.Parse(split[1])) };
string[] pointsplit = split[5].Split('|');
foreach (string t in pointsplit)
{
if (t.Length == 1)
{
switch (t)
{
case @"C":
curveType = CurveTypes.Catmull;
break;
case @"B":
curveType = CurveTypes.Bezier;
break;
case @"L":
curveType = CurveTypes.Linear;
break;
case @"P":
curveType = CurveTypes.PerfectCurve;
break;
}
continue;
}
string[] temp = t.Split(':');
Vector2 v = new Vector2(
(int)Convert.ToDouble(temp[0], CultureInfo.InvariantCulture),
(int)Convert.ToDouble(temp[1], CultureInfo.InvariantCulture)
);
points.Add(v);
}
int repeatCount = Convert.ToInt32(split[6], CultureInfo.InvariantCulture);
if (repeatCount > 9000)
throw new ArgumentOutOfRangeException(nameof(repeatCount), @"Repeat count is way too high");
if (split.Length > 7)
length = Convert.ToDouble(split[7], CultureInfo.InvariantCulture);
result = new Slider
{
ControlPoints = points,
Length = length,
CurveType = curveType,
RepeatCount = repeatCount,
Position = new Vector2(int.Parse(split[0]), int.Parse(split[1]))
};
break;
case HitObjectType.Spinner:
result = new Spinner
{
Length = Convert.ToDouble(split[5], CultureInfo.InvariantCulture) - Convert.ToDouble(split[2], CultureInfo.InvariantCulture),
Position = new Vector2(512, 384) / 2,
};
break;
default:
throw new InvalidOperationException($@"Unknown hit object type {type}");
}
result.StartTime = Convert.ToDouble(split[2], CultureInfo.InvariantCulture);
result.Sample = new HitSampleInfo
{
Type = (SampleType)int.Parse(split[4]),
Set = SampleSet.Soft,
};
result.NewCombo = combo;
// TODO: "addition" field
return result;
}
}
}

View File

@ -5,41 +5,33 @@ using OpenTK;
using osu.Game.Beatmaps;
using osu.Game.Beatmaps.Samples;
using osu.Game.Beatmaps.Timing;
using osu.Game.Modes.Objects.Types;
using System;
using System.Collections.Generic;
using osu.Game.Modes.Objects;
namespace osu.Game.Modes.Osu.Objects
{
public class Slider : OsuHitObject
public class Slider : OsuHitObject, IHasCurve
{
public override double EndTime => StartTime + RepeatCount * Curve.Length / Velocity;
public IHasCurve CurveObject { get; set; }
public SliderCurve Curve => CurveObject.Curve;
public double EndTime => StartTime + RepeatCount * Curve.Distance / Velocity;
public double Duration => EndTime - StartTime;
public override Vector2 EndPosition => PositionAt(1);
/// <summary>
/// Computes the position on the slider at a given progress that ranges from 0 (beginning of the slider)
/// to 1 (end of the slider). This includes repeat logic.
/// </summary>
/// <param name="progress">Ranges from 0 (beginning of the slider) to 1 (end of the slider).</param>
/// <returns></returns>
public Vector2 PositionAt(double progress) => Curve.PositionAt(CurveProgressAt(progress));
public Vector2 PositionAt(double progress) => CurveObject.PositionAt(progress);
public double ProgressAt(double progress) => CurveObject.ProgressAt(progress);
public int RepeatAt(double progress) => CurveObject.RepeatAt(progress);
/// <summary>
/// Find the current progress along the curve, accounting for repeat logic.
/// </summary>
public double CurveProgressAt(double progress)
{
var p = progress * RepeatCount % 1;
if (RepeatAt(progress) % 2 == 1)
p = 1 - p;
return p;
}
public List<Vector2> ControlPoints => CurveObject.ControlPoints;
public CurveType CurveType => CurveObject.CurveType;
public double Distance => CurveObject.Distance;
/// <summary>
/// Determine which repeat of the slider we are on at a given progress.
/// Range is 0..RepeatCount where 0 is the first run.
/// </summary>
public int RepeatAt(double progress) => (int)(progress * RepeatCount);
public int RepeatCount => CurveObject.RepeatCount;
private int stackHeight;
public override int StackHeight
@ -52,28 +44,10 @@ namespace osu.Game.Modes.Osu.Objects
}
}
public List<Vector2> ControlPoints
{
get { return Curve.ControlPoints; }
set { Curve.ControlPoints = value; }
}
public double Length
{
get { return Curve.Length; }
set { Curve.Length = value; }
}
public CurveTypes CurveType
{
get { return Curve.CurveType; }
set { Curve.CurveType = value; }
}
public double Velocity;
public double TickDistance;
public override void SetDefaultsFromBeatmap(Beatmap beatmap)
public override void SetDefaultsFromBeatmap(Beatmap<OsuHitObject> beatmap)
{
base.SetDefaultsFromBeatmap(beatmap);
@ -88,17 +62,13 @@ namespace osu.Game.Modes.Osu.Objects
TickDistance = baseVelocity / baseDifficulty.SliderTickRate;
}
public int RepeatCount = 1;
internal readonly SliderCurve Curve = new SliderCurve();
public IEnumerable<SliderTick> Ticks
{
get
{
if (TickDistance == 0) yield break;
var length = Curve.Length;
var length = Curve.Distance;
var tickDistance = Math.Min(TickDistance, length);
var repeatDuration = length / Velocity;
@ -124,7 +94,7 @@ namespace osu.Game.Modes.Osu.Objects
Position = Curve.PositionAt(distanceProgress),
StackHeight = StackHeight,
Scale = Scale,
Colour = Colour,
ComboColour = ComboColour,
Sample = new HitSampleInfo
{
Type = SampleType.None,
@ -138,12 +108,4 @@ namespace osu.Game.Modes.Osu.Objects
public override HitObjectType Type => HitObjectType.Slider;
}
public enum CurveTypes
{
Catmull,
Bezier,
Linear,
PerfectCurve
}
}

View File

@ -1,202 +0,0 @@
// Copyright (c) 2007-2017 ppy Pty Ltd <contact@ppy.sh>.
// Licensed under the MIT Licence - https://raw.githubusercontent.com/ppy/osu/master/LICENCE
using System.Collections.Generic;
using OpenTK;
using System.Linq;
using osu.Framework.MathUtils;
namespace osu.Game.Modes.Osu.Objects
{
public class SliderCurve
{
public double Length;
public List<Vector2> ControlPoints;
public CurveTypes CurveType = CurveTypes.PerfectCurve;
public Vector2 Offset;
private List<Vector2> calculatedPath = new List<Vector2>();
private List<double> cumulativeLength = new List<double>();
private List<Vector2> calculateSubpath(List<Vector2> subControlPoints)
{
switch (CurveType)
{
case CurveTypes.Linear:
return subControlPoints;
case CurveTypes.PerfectCurve:
//we can only use CircularArc iff we have exactly three control points and no dissection.
if (ControlPoints.Count != 3 || subControlPoints.Count != 3)
break;
// Here we have exactly 3 control points. Attempt to fit a circular arc.
List<Vector2> subpath = new CircularArcApproximator(subControlPoints[0], subControlPoints[1], subControlPoints[2]).CreateArc();
// If for some reason a circular arc could not be fit to the 3 given points, fall back to a numerically stable bezier approximation.
if (subpath.Count == 0)
break;
return subpath;
}
return new BezierApproximator(subControlPoints).CreateBezier();
}
private void calculatePath()
{
calculatedPath.Clear();
// Sliders may consist of various subpaths separated by two consecutive vertices
// with the same position. The following loop parses these subpaths and computes
// their shape independently, consecutively appending them to calculatedPath.
List<Vector2> subControlPoints = new List<Vector2>();
for (int i = 0; i < ControlPoints.Count; ++i)
{
subControlPoints.Add(ControlPoints[i]);
if (i == ControlPoints.Count - 1 || ControlPoints[i] == ControlPoints[i + 1])
{
List<Vector2> subpath = calculateSubpath(subControlPoints);
foreach (Vector2 t in subpath)
if (calculatedPath.Count == 0 || calculatedPath.Last() != t)
calculatedPath.Add(t);
subControlPoints.Clear();
}
}
}
private void calculateCumulativeLengthAndTrimPath()
{
double l = 0;
cumulativeLength.Clear();
cumulativeLength.Add(l);
for (int i = 0; i < calculatedPath.Count - 1; ++i)
{
Vector2 diff = calculatedPath[i + 1] - calculatedPath[i];
double d = diff.Length;
// Shorten slider curves that are too long compared to what's
// in the .osu file.
if (Length - l < d)
{
calculatedPath[i + 1] = calculatedPath[i] + diff * (float)((Length - l) / d);
calculatedPath.RemoveRange(i + 2, calculatedPath.Count - 2 - i);
l = Length;
cumulativeLength.Add(l);
break;
}
l += d;
cumulativeLength.Add(l);
}
//TODO: Figure out if the following code is needed in some cases. Judging by the map
// "Transform" http://osu.ppy.sh/s/484689 it seems like we should _not_ be doing this.
// Lengthen slider curves that are too short compared to what's
// in the .osu file.
/*if (l < Length && calculatedPath.Count > 1)
{
Vector2 diff = calculatedPath[calculatedPath.Count - 1] - calculatedPath[calculatedPath.Count - 2];
double d = diff.Length;
if (d <= 0)
return;
calculatedPath[calculatedPath.Count - 1] += diff * (float)((Length - l) / d);
cumulativeLength[calculatedPath.Count - 1] = Length;
}*/
}
public void Calculate()
{
calculatePath();
calculateCumulativeLengthAndTrimPath();
}
private int indexOfDistance(double d)
{
int i = cumulativeLength.BinarySearch(d);
if (i < 0) i = ~i;
return i;
}
private double progressToDistance(double progress)
{
return MathHelper.Clamp(progress, 0, 1) * Length;
}
private Vector2 interpolateVertices(int i, double d)
{
if (calculatedPath.Count == 0)
return Vector2.Zero;
if (i <= 0)
return calculatedPath.First();
else if (i >= calculatedPath.Count)
return calculatedPath.Last();
Vector2 p0 = calculatedPath[i - 1];
Vector2 p1 = calculatedPath[i];
double d0 = cumulativeLength[i - 1];
double d1 = cumulativeLength[i];
// Avoid division by and almost-zero number in case two points are extremely close to each other.
if (Precision.AlmostEquals(d0, d1))
return p0;
double w = (d - d0) / (d1 - d0);
return p0 + (p1 - p0) * (float)w;
}
/// <summary>
/// Computes the slider curve until a given progress that ranges from 0 (beginning of the slider)
/// to 1 (end of the slider) and stores the generated path in the given list.
/// </summary>
/// <param name="path">The list to be filled with the computed curve.</param>
/// <param name="p0">Start progress. Ranges from 0 (beginning of the slider) to 1 (end of the slider).</param>
/// <param name="p1">End progress. Ranges from 0 (beginning of the slider) to 1 (end of the slider).</param>
public void GetPathToProgress(List<Vector2> path, double p0, double p1)
{
if (calculatedPath.Count == 0 && ControlPoints.Count > 0)
Calculate();
double d0 = progressToDistance(p0);
double d1 = progressToDistance(p1);
path.Clear();
int i = 0;
for (; i < calculatedPath.Count && cumulativeLength[i] < d0; ++i) { }
path.Add(interpolateVertices(i, d0) + Offset);
for (; i < calculatedPath.Count && cumulativeLength[i] <= d1; ++i)
path.Add(calculatedPath[i] + Offset);
path.Add(interpolateVertices(i, d1) + Offset);
}
/// <summary>
/// Computes the position on the slider at a given progress that ranges from 0 (beginning of the curve)
/// to 1 (end of the curve).
/// </summary>
/// <param name="progress">Ranges from 0 (beginning of the curve) to 1 (end of the curve).</param>
/// <returns></returns>
public Vector2 PositionAt(double progress)
{
if (calculatedPath.Count == 0 && ControlPoints.Count > 0)
Calculate();
double d = progressToDistance(progress);
return interpolateVertices(indexOfDistance(d), d) + Offset;
}
}
}

View File

@ -1,14 +1,17 @@
// Copyright (c) 2007-2017 ppy Pty Ltd <contact@ppy.sh>.
// Licensed under the MIT Licence - https://raw.githubusercontent.com/ppy/osu/master/LICENCE
using osu.Game.Modes.Objects.Types;
namespace osu.Game.Modes.Osu.Objects
{
public class Spinner : OsuHitObject
public class Spinner : OsuHitObject, IHasEndTime
{
public double Length;
public override double EndTime => StartTime + Length;
public double EndTime { get; set; }
public double Duration => EndTime - StartTime;
public override HitObjectType Type => HitObjectType.Spinner;
public override bool NewCombo => true;
}
}