Refactor drain calculation for resiliency

This commit is contained in:
smoogipoo
2019-12-26 17:36:40 +09:00
parent 662ec2d812
commit f5dbd57d55

View File

@ -14,8 +14,12 @@ namespace osu.Game.Rulesets.Scoring
/// </summary> /// </summary>
public class DrainingHealthProcessor : HealthProcessor public class DrainingHealthProcessor : HealthProcessor
{ {
private IBeatmap beatmap; /// <summary>
/// A reasonable allowable error for the minimum health offset from <see cref="targetMinimumHealth"/>. A 1% error is unnoticeable.
/// </summary>
private const double minimum_health_error = 0.01;
private IBeatmap beatmap;
private double gameplayEndTime; private double gameplayEndTime;
private List<(double time, double health)> healthIncreases; private List<(double time, double health)> healthIncreases;
@ -74,49 +78,60 @@ namespace osu.Game.Rulesets.Scoring
drainRate = 1; drainRate = 1;
if (storeResults) if (storeResults)
drainRate = computeDrainRate();
}
private double computeDrainRate()
{
if (healthIncreases == null || healthIncreases.Count == 0)
return 0;
int adjustment = 1;
double result = 1;
// Although we expect the following loop to converge within 30 iterations (health within 1/2^31 accuracy of the target),
// we'll still keep a safety measure to avoid infinite loops by detecting overflows.
while (adjustment > 0)
{ {
int count = 1; double currentHealth = 1;
double lowestHealth = 1;
int currentBreak = -1;
while (true) for (int i = 0; i < healthIncreases.Count; i++)
{ {
double currentHealth = 1; double currentTime = healthIncreases[i].time;
double lowestHealth = 1; double lastTime = i > 0 ? healthIncreases[i - 1].time : GameplayStartTime;
int currentBreak = -1;
for (int i = 0; i < healthIncreases.Count; i++) // Subtract any break time from the duration since the last object
if (beatmap.Breaks.Count > 0)
{ {
double currentTime = healthIncreases[i].time; while (currentBreak + 1 < beatmap.Breaks.Count && beatmap.Breaks[currentBreak + 1].EndTime < currentTime)
double lastTime = i > 0 ? healthIncreases[i - 1].time : GameplayStartTime; currentBreak++;
// Subtract any break time from the duration since the last object if (currentBreak >= 0)
if (beatmap.Breaks.Count > 0) lastTime = Math.Max(lastTime, beatmap.Breaks[currentBreak].EndTime);
{
while (currentBreak + 1 < beatmap.Breaks.Count && beatmap.Breaks[currentBreak + 1].EndTime < currentTime)
currentBreak++;
if (currentBreak >= 0)
lastTime = Math.Max(lastTime, beatmap.Breaks[currentBreak].EndTime);
}
// Apply health adjustments
currentHealth -= (healthIncreases[i].time - lastTime) * drainRate;
lowestHealth = Math.Min(lowestHealth, currentHealth);
currentHealth = Math.Min(1, currentHealth + healthIncreases[i].health);
// Common scenario for when the drain rate is definitely too harsh
if (lowestHealth < 0)
break;
} }
if (Math.Abs(lowestHealth - targetMinimumHealth) <= 0.01) // Apply health adjustments
break; currentHealth -= (healthIncreases[i].time - lastTime) * result;
lowestHealth = Math.Min(lowestHealth, currentHealth);
currentHealth = Math.Min(1, currentHealth + healthIncreases[i].health);
count *= 2; // Common scenario for when the drain rate is definitely too harsh
drainRate += 1.0 / count * Math.Sign(lowestHealth - targetMinimumHealth); if (lowestHealth < 0)
break;
} }
// Stop if the resulting health is within a reasonable offset from the target
if (Math.Abs(lowestHealth - targetMinimumHealth) <= minimum_health_error)
break;
// This effectively works like a binary search - each iteration the search space moves closer to the the target, but may exceed it.
adjustment *= 2;
result += 1.0 / adjustment * Math.Sign(lowestHealth - targetMinimumHealth);
} }
healthIncreases.Clear(); return result;
} }
} }
} }