// Copyright (c) ppy Pty Ltd . Licensed under the MIT Licence. // See the LICENCE file in the repository root for full licence text. using System; using osu.Game.Beatmaps; using osu.Game.Rulesets.Mods; using osu.Game.Rulesets.Objects; using osu.Game.Rulesets.Osu.Objects; using osu.Game.Rulesets.Osu.UI; using osuTK; namespace osu.Game.Rulesets.Osu.Mods { /// /// Mod that randomises the positions of the s /// public class OsuModRandom : ModRandom, IApplicableToBeatmap { public override string Description => "It never gets boring!"; public override bool Ranked => false; // The distances from the hit objects to the borders of the playfield they start to "turn around" and curve towards the middle. // The closer the hit objects draw to the border, the sharper the turn private const byte border_distance_x = 128; private const byte border_distance_y = 96; public void ApplyToBeatmap(IBeatmap beatmap) { var rng = new Random(); // Absolute angle float prevAngleRad = 0; // Absolute positions Vector2 prevPosUnchanged = ((OsuHitObject)beatmap.HitObjects[0]).Position; Vector2 prevPosChanged = ((OsuHitObject)beatmap.HitObjects[0]).Position; // rateOfChangeMultiplier changes every i iterations to prevent shaky-line-shaped streams byte i = 5; float rateOfChangeMultiplier = 0; foreach (var beatmapHitObject in beatmap.HitObjects) { if (!(beatmapHitObject is OsuHitObject hitObject)) return; // posUnchanged: position from the original beatmap (not randomised) var posUnchanged = hitObject.EndPosition; var posChanged = Vector2.Zero; // Angle of the vector pointing from the last to the current hit object float angleRad = 0; if (i >= 5) { i = 0; rateOfChangeMultiplier = (float)rng.NextDouble() * 2 - 1; } if (hitObject is HitCircle circle) { var distanceToPrev = Vector2.Distance(posUnchanged, prevPosUnchanged); circle.Position = posChanged = getRandomisedPosition( rateOfChangeMultiplier, prevPosChanged, prevAngleRad, distanceToPrev, out angleRad ); } // TODO: Implement slider position randomisation prevAngleRad = angleRad; prevPosUnchanged = posUnchanged; prevPosChanged = posChanged; i++; } } /// /// Returns the final position of the hit object /// /// Final position of the hit object private Vector2 getRandomisedPosition( float rateOfChangeMultiplier, Vector2 prevPosChanged, float prevAngleRad, float distanceToPrev, out float newAngle) { // The max. angle (relative to the angle of the vector pointing from the 2nd last to the last hit object) // is proportional to the distance between the last and the current hit object // to allow jumps and prevent too sharp turns during streams. var maxDistance = OsuPlayfield.BASE_SIZE.LengthFast; var randomAngleRad = rateOfChangeMultiplier * 2 * Math.PI * distanceToPrev / maxDistance; newAngle = (float)randomAngleRad + prevAngleRad; if (newAngle < 0) newAngle += 2 * (float)Math.PI; var posRelativeToPrev = new Vector2( distanceToPrev * (float)Math.Cos(newAngle), distanceToPrev * (float)Math.Sin(newAngle) ); posRelativeToPrev = getRotatedVector(prevPosChanged, posRelativeToPrev); newAngle = (float)Math.Atan2(posRelativeToPrev.Y, posRelativeToPrev.X); var position = Vector2.Add(prevPosChanged, posRelativeToPrev); // Move hit objects back into the playfield if they are outside of it, // which would sometimes happen during big jumps otherwise. if (position.X < 0) position.X = 0; else if (position.X > OsuPlayfield.BASE_SIZE.X) position.X = OsuPlayfield.BASE_SIZE.X; if (position.Y < 0) position.Y = 0; else if (position.Y > OsuPlayfield.BASE_SIZE.Y) position.Y = OsuPlayfield.BASE_SIZE.Y; return position; } /// /// Determines the position of the current hit object relative to the previous one. /// /// The position of the current hit object relative to the previous one private Vector2 getRotatedVector(Vector2 prevPosChanged, Vector2 posRelativeToPrev) { var relativeRotationDistance = 0f; var playfieldMiddle = Vector2.Divide(OsuPlayfield.BASE_SIZE, 2); if (prevPosChanged.X < playfieldMiddle.X) { relativeRotationDistance = Math.Max( (border_distance_x - prevPosChanged.X) / border_distance_x, relativeRotationDistance ); } else { relativeRotationDistance = Math.Max( (prevPosChanged.X - (OsuPlayfield.BASE_SIZE.X - border_distance_x)) / border_distance_x, relativeRotationDistance ); } if (prevPosChanged.Y < playfieldMiddle.Y) { relativeRotationDistance = Math.Max( (border_distance_y - prevPosChanged.Y) / border_distance_y, relativeRotationDistance ); } else { relativeRotationDistance = Math.Max( (prevPosChanged.Y - (OsuPlayfield.BASE_SIZE.Y - border_distance_y)) / border_distance_y, relativeRotationDistance ); } return rotateVectorTowardsVector( posRelativeToPrev, Vector2.Subtract(playfieldMiddle, prevPosChanged), relativeRotationDistance ); } /// /// Rotates vector "initial" towards vector "destinantion" /// /// Vector to rotate to "destination" /// Vector "initial" should be rotated to /// The angle the vector should be rotated relative to the difference between the angles of the the two vectors. /// Resulting vector private Vector2 rotateVectorTowardsVector(Vector2 initial, Vector2 destination, float relativeDistance) { var initialAngleRad = Math.Atan2(initial.Y, initial.X); var destAngleRad = Math.Atan2(destination.Y, destination.X); // Divide by 2 to limit the max. angle to 90° // (90° is enough to prevent the hit objects from leaving the playfield) relativeDistance /= 2; var diff = destAngleRad - initialAngleRad; while (diff < -Math.PI) { diff += 2 * Math.PI; } while (diff > Math.PI) { diff -= 2 * Math.PI; } var finalAngle = 0d; if (diff > 0) { finalAngle = initialAngleRad + relativeDistance * diff; } else if (diff < 0) { finalAngle = initialAngleRad + relativeDistance * diff; } return new Vector2( initial.Length * (float)Math.Cos(finalAngle), initial.Length * (float)Math.Sin(finalAngle) ); } } }