// Copyright (c) ppy Pty Ltd . Licensed under the MIT Licence. // See the LICENCE file in the repository root for full licence text. using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using Newtonsoft.Json; using osu.Framework.Bindables; using osu.Framework.Caching; using osu.Framework.MathUtils; using osu.Game.Rulesets.Objects.Types; using osuTK; namespace osu.Game.Rulesets.Objects { public class SliderPath { /// /// The current version of this . Updated when any change to the path occurs. /// public IBindable Version => version; private readonly Bindable version = new Bindable(); /// /// The user-set distance of the path. If non-null, will match this value, /// and the path will be shortened/lengthened to match this length. /// public readonly Bindable ExpectedDistance = new Bindable(); /// /// The control points of the path. /// public readonly BindableList ControlPoints = new BindableList(); public readonly List Test = new List(); private readonly Cached pathCache = new Cached(); private readonly List calculatedPath = new List(); private readonly List cumulativeLength = new List(); /// /// Creates a new . /// public SliderPath() { ExpectedDistance.ValueChanged += _ => invalidate(); ControlPoints.ItemsAdded += items => { foreach (var c in items) c.Changed += invalidate; invalidate(); }; ControlPoints.ItemsRemoved += items => { foreach (var c in items) c.Changed -= invalidate; invalidate(); }; } /// /// Creates a new . /// /// An optional set of s to initialise the path with. /// A user-set distance of the path that may be shorter or longer than the true distance between all control points. /// The path will be shortened/lengthened to match this length. If null, the path will use the true distance between all control points. [JsonConstructor] public SliderPath(PathControlPoint[] controlPoints, double? expectedDistance = null) : this() { ControlPoints.AddRange(controlPoints); ExpectedDistance.Value = expectedDistance; } public SliderPath(PathType type, Vector2[] controlPoints, double? expectedDistance = null) : this() { foreach (var c in controlPoints) ControlPoints.Add(new PathControlPoint { Position = { Value = c } }); ControlPoints[0].Type.Value = type; ExpectedDistance.Value = expectedDistance; } /// /// The distance of the path after lengthening/shortening to account for . /// [JsonIgnore] public double Distance { get { ensureValid(); return cumulativeLength.Count == 0 ? 0 : cumulativeLength[cumulativeLength.Count - 1]; } } /// /// Computes the slider path until a given progress that ranges from 0 (beginning of the slider) /// to 1 (end of the slider) and stores the generated path in the given list. /// /// The list to be filled with the computed path. /// Start progress. Ranges from 0 (beginning of the slider) to 1 (end of the slider). /// End progress. Ranges from 0 (beginning of the slider) to 1 (end of the slider). public void GetPathToProgress(List path, double p0, double p1) { ensureValid(); double d0 = progressToDistance(p0); double d1 = progressToDistance(p1); path.Clear(); int i = 0; for (; i < calculatedPath.Count && cumulativeLength[i] < d0; ++i) { } path.Add(interpolateVertices(i, d0)); for (; i < calculatedPath.Count && cumulativeLength[i] <= d1; ++i) path.Add(calculatedPath[i]); path.Add(interpolateVertices(i, d1)); } /// /// Computes the position on the slider at a given progress that ranges from 0 (beginning of the path) /// to 1 (end of the path). /// /// Ranges from 0 (beginning of the path) to 1 (end of the path). /// public Vector2 PositionAt(double progress) { ensureValid(); double d = progressToDistance(progress); return interpolateVertices(indexOfDistance(d), d); } private void invalidate() { pathCache.Invalidate(); version.Value++; } private void ensureValid() { if (pathCache.IsValid) return; calculatePath(); calculateCumulativeLength(); pathCache.Validate(); } private void calculatePath() { calculatedPath.Clear(); if (ControlPoints.Count == 0) return; if (ControlPoints[0].Type.Value == null) throw new InvalidOperationException($"The first control point in a {nameof(SliderPath)} must have a non-null type."); Vector2[] vertices = new Vector2[ControlPoints.Count]; for (int i = 0; i < ControlPoints.Count; i++) vertices[i] = ControlPoints[i].Position.Value; int start = 0; for (int i = 0; i < ControlPoints.Count; i++) { if (ControlPoints[i].Type.Value == null && i < ControlPoints.Count - 1) continue; Debug.Assert(ControlPoints[start].Type.Value.HasValue); // The current vertex ends the segment var segmentVertices = vertices.AsSpan().Slice(start, i - start + 1); var segmentType = ControlPoints[start].Type.Value.Value; foreach (Vector2 t in computeSubPath(segmentVertices, segmentType)) { if (calculatedPath.Count == 0 || calculatedPath.Last() != t) calculatedPath.Add(t); } // Start the new segment at the current vertex start = i; } static List computeSubPath(ReadOnlySpan subControlPoints, PathType type) { switch (type) { case PathType.Linear: return PathApproximator.ApproximateLinear(subControlPoints); case PathType.PerfectCurve: if (subControlPoints.Length != 3) break; List subpath = PathApproximator.ApproximateCircularArc(subControlPoints); // If for some reason a circular arc could not be fit to the 3 given points, fall back to a numerically stable bezier approximation. if (subpath.Count == 0) break; return subpath; case PathType.Catmull: return PathApproximator.ApproximateCatmull(subControlPoints); } return PathApproximator.ApproximateBezier(subControlPoints); } } private void calculateCumulativeLength() { double l = 0; cumulativeLength.Clear(); cumulativeLength.Add(l); double? expectedDistance = ExpectedDistance.Value; for (int i = 0; i < calculatedPath.Count - 1; ++i) { Vector2 diff = calculatedPath[i + 1] - calculatedPath[i]; double d = diff.Length; // Shorted slider paths that are too long compared to the expected distance if (expectedDistance.HasValue && expectedDistance - l < d) { calculatedPath[i + 1] = calculatedPath[i] + diff * (float)((expectedDistance - l) / d); calculatedPath.RemoveRange(i + 2, calculatedPath.Count - 2 - i); l = expectedDistance.Value; cumulativeLength.Add(l); break; } l += d; cumulativeLength.Add(l); } // Lengthen slider paths that are too short compared to the expected distance if (expectedDistance.HasValue && l < expectedDistance && calculatedPath.Count > 1) { Vector2 diff = calculatedPath[calculatedPath.Count - 1] - calculatedPath[calculatedPath.Count - 2]; double d = diff.Length; if (d <= 0) return; calculatedPath[calculatedPath.Count - 1] += diff * (float)((expectedDistance - l) / d); cumulativeLength[calculatedPath.Count - 1] = expectedDistance.Value; } } private int indexOfDistance(double d) { int i = cumulativeLength.BinarySearch(d); if (i < 0) i = ~i; return i; } private double progressToDistance(double progress) { return Math.Clamp(progress, 0, 1) * Distance; } private Vector2 interpolateVertices(int i, double d) { if (calculatedPath.Count == 0) return Vector2.Zero; if (i <= 0) return calculatedPath.First(); if (i >= calculatedPath.Count) return calculatedPath.Last(); Vector2 p0 = calculatedPath[i - 1]; Vector2 p1 = calculatedPath[i]; double d0 = cumulativeLength[i - 1]; double d1 = cumulativeLength[i]; // Avoid division by and almost-zero number in case two points are extremely close to each other. if (Precision.AlmostEquals(d0, d1)) return p0; double w = (d - d0) / (d1 - d0); return p0 + (p1 - p0) * (float)w; } } }