// Copyright (c) ppy Pty Ltd . Licensed under the MIT Licence. // See the LICENCE file in the repository root for full licence text. using System; using System.Collections.Generic; using System.Linq; using osu.Framework.Graphics.Primitives; using osu.Game.Rulesets.Osu.Objects; using osu.Game.Rulesets.Osu.UI; using osuTK; #nullable enable namespace osu.Game.Rulesets.Osu.Utils { /// /// Places hit objects according to information in while keeping objects inside the playfield. /// public class OsuHitObjectPositionModifier { /// /// Number of previous hitobjects to be shifted together when an object is being moved. /// private const int preceding_hitobjects_to_shift = 10; private static readonly Vector2 playfield_centre = OsuPlayfield.BASE_SIZE / 2; private readonly List hitObjects; private readonly List objectPositionInfos = new List(); /// /// Contains information specifying how each hit object should be placed. /// The default values correspond to how objects are originally placed in the beatmap. /// public IReadOnlyList ObjectPositionInfos => objectPositionInfos; public OsuHitObjectPositionModifier(List hitObjects) { this.hitObjects = hitObjects; populateObjectPositionInfos(); } private void populateObjectPositionInfos() { Vector2 previousPosition = playfield_centre; float previousAngle = 0; foreach (OsuHitObject hitObject in hitObjects) { Vector2 relativePosition = hitObject.Position - previousPosition; float absoluteAngle = (float)Math.Atan2(relativePosition.Y, relativePosition.X); float relativeAngle = absoluteAngle - previousAngle; objectPositionInfos.Add(new ObjectPositionInfo(hitObject) { RelativeAngle = relativeAngle, DistanceFromPrevious = relativePosition.Length }); previousPosition = hitObject.EndPosition; previousAngle = absoluteAngle; } } /// /// Reposition the hit objects according to the information in . /// public void ApplyModifications() { ObjectPositionInfo? previous = null; for (int i = 0; i < hitObjects.Count; i++) { var hitObject = hitObjects[i]; var current = objectPositionInfos[i]; if (hitObject is Spinner) { previous = null; continue; } computeModifiedPosition(current, previous, i > 1 ? objectPositionInfos[i - 2] : null); // Move hit objects back into the playfield if they are outside of it Vector2 shift = Vector2.Zero; switch (hitObject) { case HitCircle circle: shift = clampHitCircleToPlayfield(circle, current); break; case Slider slider: shift = clampSliderToPlayfield(slider, current); break; } if (shift != Vector2.Zero) { var toBeShifted = new List(); for (int j = i - 1; j >= i - preceding_hitobjects_to_shift && j >= 0; j--) { // only shift hit circles if (!(hitObjects[j] is HitCircle)) break; toBeShifted.Add(hitObjects[j]); } if (toBeShifted.Count > 0) applyDecreasingShift(toBeShifted, shift); } previous = current; } } /// /// Compute the modified position of a hit object while attempting to keep it inside the playfield. /// /// The representing the hit object to have the modified position computed for. /// The representing the hit object immediately preceding the current one. /// The representing the hit object immediately preceding the one. private void computeModifiedPosition(ObjectPositionInfo current, ObjectPositionInfo? previous, ObjectPositionInfo? beforePrevious) { float previousAbsoluteAngle = 0f; if (previous != null) { Vector2 earliestPosition = beforePrevious?.HitObject.EndPosition ?? playfield_centre; Vector2 relativePosition = previous.HitObject.Position - earliestPosition; previousAbsoluteAngle = (float)Math.Atan2(relativePosition.Y, relativePosition.X); } float absoluteAngle = previousAbsoluteAngle + current.RelativeAngle; var posRelativeToPrev = new Vector2( current.DistanceFromPrevious * (float)Math.Cos(absoluteAngle), current.DistanceFromPrevious * (float)Math.Sin(absoluteAngle) ); Vector2 lastEndPosition = previous?.EndPositionModified ?? playfield_centre; posRelativeToPrev = OsuHitObjectGenerationUtils.RotateAwayFromEdge(lastEndPosition, posRelativeToPrev); current.PositionModified = lastEndPosition + posRelativeToPrev; } /// /// Move the modified position of a hit circle so that it fits inside the playfield. /// /// The deviation from the original modified position in order to fit within the playfield. private Vector2 clampHitCircleToPlayfield(HitCircle circle, ObjectPositionInfo objectPositionInfo) { var previousPosition = objectPositionInfo.PositionModified; objectPositionInfo.EndPositionModified = objectPositionInfo.PositionModified = clampToPlayfieldWithPadding( objectPositionInfo.PositionModified, (float)circle.Radius ); circle.Position = objectPositionInfo.PositionModified; return objectPositionInfo.PositionModified - previousPosition; } /// /// Moves the and all necessary nested s into the if they aren't already. /// /// The deviation from the original modified position in order to fit within the playfield. private Vector2 clampSliderToPlayfield(Slider slider, ObjectPositionInfo objectPositionInfo) { var possibleMovementBounds = calculatePossibleMovementBounds(slider); var previousPosition = objectPositionInfo.PositionModified; // Clamp slider position to the placement area // If the slider is larger than the playfield, force it to stay at the original position float newX = possibleMovementBounds.Width < 0 ? objectPositionInfo.PositionOriginal.X : Math.Clamp(previousPosition.X, possibleMovementBounds.Left, possibleMovementBounds.Right); float newY = possibleMovementBounds.Height < 0 ? objectPositionInfo.PositionOriginal.Y : Math.Clamp(previousPosition.Y, possibleMovementBounds.Top, possibleMovementBounds.Bottom); slider.Position = objectPositionInfo.PositionModified = new Vector2(newX, newY); objectPositionInfo.EndPositionModified = slider.EndPosition; shiftNestedObjects(slider, objectPositionInfo.PositionModified - objectPositionInfo.PositionOriginal); return objectPositionInfo.PositionModified - previousPosition; } /// /// Decreasingly shift a list of s by a specified amount. /// The first item in the list is shifted by the largest amount, while the last item is shifted by the smallest amount. /// /// The list of hit objects to be shifted. /// The amount to be shifted. private void applyDecreasingShift(IList hitObjects, Vector2 shift) { for (int i = 0; i < hitObjects.Count; i++) { var hitObject = hitObjects[i]; // The first object is shifted by a vector slightly smaller than shift // The last object is shifted by a vector slightly larger than zero Vector2 position = hitObject.Position + shift * ((hitObjects.Count - i) / (float)(hitObjects.Count + 1)); hitObject.Position = clampToPlayfieldWithPadding(position, (float)hitObject.Radius); } } /// /// Calculates a which contains all of the possible movements of the slider (in relative X/Y coordinates) /// such that the entire slider is inside the playfield. /// /// /// If the slider is larger than the playfield, the returned may have negative width/height. /// private RectangleF calculatePossibleMovementBounds(Slider slider) { var pathPositions = new List(); slider.Path.GetPathToProgress(pathPositions, 0, 1); float minX = float.PositiveInfinity; float maxX = float.NegativeInfinity; float minY = float.PositiveInfinity; float maxY = float.NegativeInfinity; // Compute the bounding box of the slider. foreach (var pos in pathPositions) { minX = MathF.Min(minX, pos.X); maxX = MathF.Max(maxX, pos.X); minY = MathF.Min(minY, pos.Y); maxY = MathF.Max(maxY, pos.Y); } // Take the circle radius into account. float radius = (float)slider.Radius; minX -= radius; minY -= radius; maxX += radius; maxY += radius; // Given the bounding box of the slider (via min/max X/Y), // the amount that the slider can move to the left is minX (with the sign flipped, since positive X is to the right), // and the amount that it can move to the right is WIDTH - maxX. // Same calculation applies for the Y axis. float left = -minX; float right = OsuPlayfield.BASE_SIZE.X - maxX; float top = -minY; float bottom = OsuPlayfield.BASE_SIZE.Y - maxY; return new RectangleF(left, top, right - left, bottom - top); } /// /// Shifts all nested s and s by the specified shift. /// /// whose nested s and s should be shifted /// The the 's nested s and s should be shifted by private void shiftNestedObjects(Slider slider, Vector2 shift) { foreach (var hitObject in slider.NestedHitObjects.Where(o => o is SliderTick || o is SliderRepeat)) { if (!(hitObject is OsuHitObject osuHitObject)) continue; osuHitObject.Position += shift; } } /// /// Clamp a position to playfield, keeping a specified distance from the edges. /// /// The position to be clamped. /// The minimum distance allowed from playfield edges. /// The clamped position. private Vector2 clampToPlayfieldWithPadding(Vector2 position, float padding) { return new Vector2( Math.Clamp(position.X, padding, OsuPlayfield.BASE_SIZE.X - padding), Math.Clamp(position.Y, padding, OsuPlayfield.BASE_SIZE.Y - padding) ); } public interface IObjectPositionInfo { /// /// The jump angle from the previous hit object to this one, relative to the previous hit object's jump angle. /// /// /// of the first hit object in a beatmap represents the absolute angle from playfield center to the object. /// /// /// If is 0, the player's cursor doesn't need to change its direction of movement when passing /// the previous object to reach this one. /// float RelativeAngle { get; set; } /// /// The jump distance from the previous hit object to this one. /// /// /// of the first hit object in a beatmap is relative to the playfield center. /// float DistanceFromPrevious { get; set; } /// /// The hit object associated with this . /// OsuHitObject HitObject { get; } } private class ObjectPositionInfo : IObjectPositionInfo { public float RelativeAngle { get; set; } public float DistanceFromPrevious { get; set; } public Vector2 PositionOriginal { get; } public Vector2 PositionModified { get; set; } public Vector2 EndPositionModified { get; set; } public OsuHitObject HitObject { get; } public ObjectPositionInfo(OsuHitObject hitObject) { PositionModified = PositionOriginal = hitObject.Position; EndPositionModified = hitObject.EndPosition; HitObject = hitObject; } } } }