整理した
This commit is contained in:
@ -1,49 +0,0 @@
|
||||
const bayes = require('./naive-bayes.js');
|
||||
|
||||
const MeCab = require('./mecab');
|
||||
import Post from '../../server/api/models/post';
|
||||
|
||||
/**
|
||||
* 投稿を学習したり与えられた投稿のカテゴリを予測します
|
||||
*/
|
||||
export default class Categorizer {
|
||||
private classifier: any;
|
||||
private mecab: any;
|
||||
|
||||
constructor() {
|
||||
this.mecab = new MeCab();
|
||||
|
||||
// BIND -----------------------------------
|
||||
this.tokenizer = this.tokenizer.bind(this);
|
||||
}
|
||||
|
||||
private tokenizer(text: string) {
|
||||
const tokens = this.mecab.parseSync(text)
|
||||
// 名詞だけに制限
|
||||
.filter(token => token[1] === '名詞')
|
||||
// 取り出し
|
||||
.map(token => token[0]);
|
||||
|
||||
return tokens;
|
||||
}
|
||||
|
||||
public async init() {
|
||||
this.classifier = bayes({
|
||||
tokenizer: this.tokenizer
|
||||
});
|
||||
|
||||
// 訓練データ取得
|
||||
const verifiedPosts = await Post.find({
|
||||
is_category_verified: true
|
||||
});
|
||||
|
||||
// 学習
|
||||
verifiedPosts.forEach(post => {
|
||||
this.classifier.learn(post.text, post.category);
|
||||
});
|
||||
}
|
||||
|
||||
public async predict(text) {
|
||||
return this.classifier.categorize(text);
|
||||
}
|
||||
}
|
@ -1,120 +0,0 @@
|
||||
import * as URL from 'url';
|
||||
|
||||
import Post from '../../server/api/models/post';
|
||||
import User from '../../server/api/models/user';
|
||||
import parse from '../../server/api/common/text';
|
||||
|
||||
process.on('unhandledRejection', console.dir);
|
||||
|
||||
function tokenize(text: string) {
|
||||
if (text == null) return [];
|
||||
|
||||
// パース
|
||||
const ast = parse(text);
|
||||
|
||||
const domains = ast
|
||||
// URLを抽出
|
||||
.filter(t => t.type == 'url' || t.type == 'link')
|
||||
.map(t => URL.parse(t.url).hostname);
|
||||
|
||||
return domains;
|
||||
}
|
||||
|
||||
// Fetch all users
|
||||
User.find({}, {
|
||||
fields: {
|
||||
_id: true
|
||||
}
|
||||
}).then(users => {
|
||||
let i = -1;
|
||||
|
||||
const x = cb => {
|
||||
if (++i == users.length) return cb();
|
||||
extractDomainsOne(users[i]._id).then(() => x(cb), err => {
|
||||
console.error(err);
|
||||
setTimeout(() => {
|
||||
i--;
|
||||
x(cb);
|
||||
}, 1000);
|
||||
});
|
||||
};
|
||||
|
||||
x(() => {
|
||||
console.log('complete');
|
||||
});
|
||||
});
|
||||
|
||||
function extractDomainsOne(id) {
|
||||
return new Promise(async (resolve, reject) => {
|
||||
process.stdout.write(`extracting domains of ${id} ...`);
|
||||
|
||||
// Fetch recent posts
|
||||
const recentPosts = await Post.find({
|
||||
userId: id,
|
||||
text: {
|
||||
$exists: true
|
||||
}
|
||||
}, {
|
||||
sort: {
|
||||
_id: -1
|
||||
},
|
||||
limit: 10000,
|
||||
fields: {
|
||||
_id: false,
|
||||
text: true
|
||||
}
|
||||
});
|
||||
|
||||
// 投稿が少なかったら中断
|
||||
if (recentPosts.length < 100) {
|
||||
process.stdout.write(' >>> -\n');
|
||||
return resolve();
|
||||
}
|
||||
|
||||
const domains = {};
|
||||
|
||||
// Extract domains from recent posts
|
||||
recentPosts.forEach(post => {
|
||||
const domainsOfPost = tokenize(post.text);
|
||||
|
||||
domainsOfPost.forEach(domain => {
|
||||
if (domains[domain]) {
|
||||
domains[domain]++;
|
||||
} else {
|
||||
domains[domain] = 1;
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
// Calc peak
|
||||
let peak = 0;
|
||||
Object.keys(domains).forEach(domain => {
|
||||
if (domains[domain] > peak) peak = domains[domain];
|
||||
});
|
||||
|
||||
// Sort domains by frequency
|
||||
const domainsSorted = Object.keys(domains).sort((a, b) => domains[b] - domains[a]);
|
||||
|
||||
// Lookup top 10 domains
|
||||
const topDomains = domainsSorted.slice(0, 10);
|
||||
|
||||
process.stdout.write(' >>> ' + topDomains.join(', ') + '\n');
|
||||
|
||||
// Make domains object (includes weights)
|
||||
const domainsObj = topDomains.map(domain => ({
|
||||
domain: domain,
|
||||
weight: domains[domain] / peak
|
||||
}));
|
||||
|
||||
// Save
|
||||
User.update({ _id: id }, {
|
||||
$set: {
|
||||
domains: domainsObj
|
||||
}
|
||||
}).then(() => {
|
||||
resolve();
|
||||
}, err => {
|
||||
reject(err);
|
||||
});
|
||||
});
|
||||
}
|
@ -1,154 +0,0 @@
|
||||
const moji = require('moji');
|
||||
|
||||
const MeCab = require('./mecab');
|
||||
import Post from '../../server/api/models/post';
|
||||
import User from '../../server/api/models/user';
|
||||
import parse from '../../server/api/common/text';
|
||||
|
||||
process.on('unhandledRejection', console.dir);
|
||||
|
||||
const stopwords = [
|
||||
'ー',
|
||||
|
||||
'の', 'に', 'は', 'を', 'た', 'が', 'で', 'て', 'と', 'し', 'れ', 'さ',
|
||||
'ある', 'いる', 'も', 'する', 'から', 'な', 'こと', 'として', 'い', 'や', 'れる',
|
||||
'など', 'なっ', 'ない', 'この', 'ため', 'その', 'あっ', 'よう', 'また', 'もの',
|
||||
'という', 'あり', 'まで', 'られ', 'なる', 'へ', 'か', 'だ', 'これ', 'によって',
|
||||
'により', 'おり', 'より', 'による', 'ず', 'なり', 'られる', 'において', 'ば', 'なかっ',
|
||||
'なく', 'しかし', 'について', 'せ', 'だっ', 'その後', 'できる', 'それ', 'う', 'ので',
|
||||
'なお', 'のみ', 'でき', 'き', 'つ', 'における', 'および', 'いう', 'さらに', 'でも',
|
||||
'ら', 'たり', 'その他', 'に関する', 'たち', 'ます', 'ん', 'なら', 'に対して', '特に',
|
||||
'せる', '及び', 'これら', 'とき', 'では', 'にて', 'ほか', 'ながら', 'うち', 'そして',
|
||||
'とともに', 'ただし', 'かつて', 'それぞれ', 'または', 'お', 'ほど', 'ものの', 'に対する',
|
||||
'ほとんど', 'と共に', 'といった', 'です', 'とも', 'ところ', 'ここ', '感じ', '気持ち',
|
||||
'あと', '自分', 'すき', '()',
|
||||
|
||||
'about', 'after', 'all', 'also', 'am', 'an', 'and', 'another', 'any', 'are', 'as', 'at', 'be',
|
||||
'because', 'been', 'before', 'being', 'between', 'both', 'but', 'by', 'came', 'can',
|
||||
'come', 'could', 'did', 'do', 'each', 'for', 'from', 'get', 'got', 'has', 'had',
|
||||
'he', 'have', 'her', 'here', 'him', 'himself', 'his', 'how', 'if', 'in', 'into',
|
||||
'is', 'it', 'like', 'make', 'many', 'me', 'might', 'more', 'most', 'much', 'must',
|
||||
'my', 'never', 'now', 'of', 'on', 'only', 'or', 'other', 'our', 'out', 'over',
|
||||
'said', 'same', 'see', 'should', 'since', 'some', 'still', 'such', 'take', 'than',
|
||||
'that', 'the', 'their', 'them', 'then', 'there', 'these', 'they', 'this', 'those',
|
||||
'through', 'to', 'too', 'under', 'up', 'very', 'was', 'way', 'we', 'well', 'were',
|
||||
'what', 'where', 'which', 'while', 'who', 'with', 'would', 'you', 'your', 'a', 'i'
|
||||
];
|
||||
|
||||
const mecab = new MeCab();
|
||||
|
||||
function tokenize(text: string) {
|
||||
if (text == null) return [];
|
||||
|
||||
// パース
|
||||
const ast = parse(text);
|
||||
|
||||
const plain = ast
|
||||
// テキストのみ(URLなどを除外するという意)
|
||||
.filter(t => t.type == 'text' || t.type == 'bold')
|
||||
.map(t => t.content)
|
||||
.join('');
|
||||
|
||||
const tokens = mecab.parseSync(plain)
|
||||
// キーワードのみ
|
||||
.filter(token => token[1] == '名詞' && (token[2] == '固有名詞' || token[2] == '一般'))
|
||||
// 取り出し(&整形(全角を半角にしたり大文字を小文字で統一したり))
|
||||
.map(token => moji(token[0]).convert('ZE', 'HE').convert('HK', 'ZK').toString().toLowerCase())
|
||||
// ストップワードなど
|
||||
.filter(word =>
|
||||
stopwords.indexOf(word) === -1 &&
|
||||
word.length > 1 &&
|
||||
word.indexOf('!') === -1 &&
|
||||
word.indexOf('!') === -1 &&
|
||||
word.indexOf('?') === -1 &&
|
||||
word.indexOf('?') === -1);
|
||||
|
||||
return tokens;
|
||||
}
|
||||
|
||||
// Fetch all users
|
||||
User.find({}, {
|
||||
fields: {
|
||||
_id: true
|
||||
}
|
||||
}).then(users => {
|
||||
let i = -1;
|
||||
|
||||
const x = cb => {
|
||||
if (++i == users.length) return cb();
|
||||
extractKeywordsOne(users[i]._id).then(() => x(cb), err => {
|
||||
console.error(err);
|
||||
setTimeout(() => {
|
||||
i--;
|
||||
x(cb);
|
||||
}, 1000);
|
||||
});
|
||||
};
|
||||
|
||||
x(() => {
|
||||
console.log('complete');
|
||||
});
|
||||
});
|
||||
|
||||
function extractKeywordsOne(id) {
|
||||
return new Promise(async (resolve, reject) => {
|
||||
process.stdout.write(`extracting keywords of ${id} ...`);
|
||||
|
||||
// Fetch recent posts
|
||||
const recentPosts = await Post.find({
|
||||
userId: id,
|
||||
text: {
|
||||
$exists: true
|
||||
}
|
||||
}, {
|
||||
sort: {
|
||||
_id: -1
|
||||
},
|
||||
limit: 10000,
|
||||
fields: {
|
||||
_id: false,
|
||||
text: true
|
||||
}
|
||||
});
|
||||
|
||||
// 投稿が少なかったら中断
|
||||
if (recentPosts.length < 300) {
|
||||
process.stdout.write(' >>> -\n');
|
||||
return resolve();
|
||||
}
|
||||
|
||||
const keywords = {};
|
||||
|
||||
// Extract keywords from recent posts
|
||||
recentPosts.forEach(post => {
|
||||
const keywordsOfPost = tokenize(post.text);
|
||||
|
||||
keywordsOfPost.forEach(keyword => {
|
||||
if (keywords[keyword]) {
|
||||
keywords[keyword]++;
|
||||
} else {
|
||||
keywords[keyword] = 1;
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
// Sort keywords by frequency
|
||||
const keywordsSorted = Object.keys(keywords).sort((a, b) => keywords[b] - keywords[a]);
|
||||
|
||||
// Lookup top 10 keywords
|
||||
const topKeywords = keywordsSorted.slice(0, 10);
|
||||
|
||||
process.stdout.write(' >>> ' + topKeywords.join(', ') + '\n');
|
||||
|
||||
// Save
|
||||
User.update({ _id: id }, {
|
||||
$set: {
|
||||
keywords: topKeywords
|
||||
}
|
||||
}).then(() => {
|
||||
resolve();
|
||||
}, err => {
|
||||
reject(err);
|
||||
});
|
||||
});
|
||||
}
|
@ -1,85 +0,0 @@
|
||||
// Original source code: https://github.com/hecomi/node-mecab-async
|
||||
// CUSTOMIZED BY SYUILO
|
||||
|
||||
var exec = require('child_process').exec;
|
||||
var execSync = require('child_process').execSync;
|
||||
var sq = require('shell-quote');
|
||||
|
||||
const config = require('../../conf').default;
|
||||
|
||||
// for backward compatibility
|
||||
var MeCab = function() {};
|
||||
|
||||
MeCab.prototype = {
|
||||
command : config.analysis.mecab_command ? config.analysis.mecab_command : 'mecab',
|
||||
_format: function(arrayResult) {
|
||||
var result = [];
|
||||
if (!arrayResult) { return result; }
|
||||
// Reference: http://mecab.googlecode.com/svn/trunk/mecab/doc/index.html
|
||||
// 表層形\t品詞,品詞細分類1,品詞細分類2,品詞細分類3,活用形,活用型,原形,読み,発音
|
||||
arrayResult.forEach(function(parsed) {
|
||||
if (parsed.length <= 8) { return; }
|
||||
result.push({
|
||||
kanji : parsed[0],
|
||||
lexical : parsed[1],
|
||||
compound : parsed[2],
|
||||
compound2 : parsed[3],
|
||||
compound3 : parsed[4],
|
||||
conjugation : parsed[5],
|
||||
inflection : parsed[6],
|
||||
original : parsed[7],
|
||||
reading : parsed[8],
|
||||
pronunciation : parsed[9] || ''
|
||||
});
|
||||
});
|
||||
return result;
|
||||
},
|
||||
_shellCommand : function(str) {
|
||||
return sq.quote(['echo', str]) + ' | ' + this.command;
|
||||
},
|
||||
_parseMeCabResult : function(result) {
|
||||
return result.split('\n').map(function(line) {
|
||||
return line.replace('\t', ',').split(',');
|
||||
});
|
||||
},
|
||||
parse : function(str, callback) {
|
||||
process.nextTick(function() { // for bug
|
||||
exec(MeCab._shellCommand(str), function(err, result) {
|
||||
if (err) { return callback(err); }
|
||||
callback(err, MeCab._parseMeCabResult(result).slice(0,-2));
|
||||
});
|
||||
});
|
||||
},
|
||||
parseSync : function(str) {
|
||||
var result = execSync(MeCab._shellCommand(str));
|
||||
return MeCab._parseMeCabResult(String(result)).slice(0, -2);
|
||||
},
|
||||
parseFormat : function(str, callback) {
|
||||
MeCab.parse(str, function(err, result) {
|
||||
if (err) { return callback(err); }
|
||||
callback(err, MeCab._format(result));
|
||||
});
|
||||
},
|
||||
parseSyncFormat : function(str) {
|
||||
return MeCab._format(MeCab.parseSync(str));
|
||||
},
|
||||
_wakatsu : function(arr) {
|
||||
return arr.map(function(data) { return data[0]; });
|
||||
},
|
||||
wakachi : function(str, callback) {
|
||||
MeCab.parse(str, function(err, arr) {
|
||||
if (err) { return callback(err); }
|
||||
callback(null, MeCab._wakatsu(arr));
|
||||
});
|
||||
},
|
||||
wakachiSync : function(str) {
|
||||
var arr = MeCab.parseSync(str);
|
||||
return MeCab._wakatsu(arr);
|
||||
}
|
||||
};
|
||||
|
||||
for (var x in MeCab.prototype) {
|
||||
MeCab[x] = MeCab.prototype[x];
|
||||
}
|
||||
|
||||
module.exports = MeCab;
|
@ -1,302 +0,0 @@
|
||||
// Original source code: https://github.com/ttezel/bayes/blob/master/lib/naive_bayes.js (commit: 2c20d3066e4fc786400aaedcf3e42987e52abe3c)
|
||||
// CUSTOMIZED BY SYUILO
|
||||
|
||||
/*
|
||||
Expose our naive-bayes generator function
|
||||
*/
|
||||
module.exports = function (options) {
|
||||
return new Naivebayes(options)
|
||||
}
|
||||
|
||||
// keys we use to serialize a classifier's state
|
||||
var STATE_KEYS = module.exports.STATE_KEYS = [
|
||||
'categories', 'docCount', 'totalDocuments', 'vocabulary', 'vocabularySize',
|
||||
'wordCount', 'wordFrequencyCount', 'options'
|
||||
];
|
||||
|
||||
/**
|
||||
* Initializes a NaiveBayes instance from a JSON state representation.
|
||||
* Use this with classifier.toJson().
|
||||
*
|
||||
* @param {String} jsonStr state representation obtained by classifier.toJson()
|
||||
* @return {NaiveBayes} Classifier
|
||||
*/
|
||||
module.exports.fromJson = function (jsonStr) {
|
||||
var parsed;
|
||||
try {
|
||||
parsed = JSON.parse(jsonStr)
|
||||
} catch (e) {
|
||||
throw new Error('Naivebayes.fromJson expects a valid JSON string.')
|
||||
}
|
||||
// init a new classifier
|
||||
var classifier = new Naivebayes(parsed.options)
|
||||
|
||||
// override the classifier's state
|
||||
STATE_KEYS.forEach(function (k) {
|
||||
if (!parsed[k]) {
|
||||
throw new Error('Naivebayes.fromJson: JSON string is missing an expected property: `'+k+'`.')
|
||||
}
|
||||
classifier[k] = parsed[k]
|
||||
})
|
||||
|
||||
return classifier
|
||||
}
|
||||
|
||||
/**
|
||||
* Given an input string, tokenize it into an array of word tokens.
|
||||
* This is the default tokenization function used if user does not provide one in `options`.
|
||||
*
|
||||
* @param {String} text
|
||||
* @return {Array}
|
||||
*/
|
||||
var defaultTokenizer = function (text) {
|
||||
//remove punctuation from text - remove anything that isn't a word char or a space
|
||||
var rgxPunctuation = /[^(a-zA-ZA-Яa-я0-9_)+\s]/g
|
||||
|
||||
var sanitized = text.replace(rgxPunctuation, ' ')
|
||||
|
||||
return sanitized.split(/\s+/)
|
||||
}
|
||||
|
||||
/**
|
||||
* Naive-Bayes Classifier
|
||||
*
|
||||
* This is a naive-bayes classifier that uses Laplace Smoothing.
|
||||
*
|
||||
* Takes an (optional) options object containing:
|
||||
* - `tokenizer` => custom tokenization function
|
||||
*
|
||||
*/
|
||||
function Naivebayes (options) {
|
||||
// set options object
|
||||
this.options = {}
|
||||
if (typeof options !== 'undefined') {
|
||||
if (!options || typeof options !== 'object' || Array.isArray(options)) {
|
||||
throw TypeError('NaiveBayes got invalid `options`: `' + options + '`. Pass in an object.')
|
||||
}
|
||||
this.options = options
|
||||
}
|
||||
|
||||
this.tokenizer = this.options.tokenizer || defaultTokenizer
|
||||
|
||||
//initialize our vocabulary and its size
|
||||
this.vocabulary = {}
|
||||
this.vocabularySize = 0
|
||||
|
||||
//number of documents we have learned from
|
||||
this.totalDocuments = 0
|
||||
|
||||
//document frequency table for each of our categories
|
||||
//=> for each category, how often were documents mapped to it
|
||||
this.docCount = {}
|
||||
|
||||
//for each category, how many words total were mapped to it
|
||||
this.wordCount = {}
|
||||
|
||||
//word frequency table for each category
|
||||
//=> for each category, how frequent was a given word mapped to it
|
||||
this.wordFrequencyCount = {}
|
||||
|
||||
//hashmap of our category names
|
||||
this.categories = {}
|
||||
}
|
||||
|
||||
/**
|
||||
* Initialize each of our data structure entries for this new category
|
||||
*
|
||||
* @param {String} categoryName
|
||||
*/
|
||||
Naivebayes.prototype.initializeCategory = function (categoryName) {
|
||||
if (!this.categories[categoryName]) {
|
||||
this.docCount[categoryName] = 0
|
||||
this.wordCount[categoryName] = 0
|
||||
this.wordFrequencyCount[categoryName] = {}
|
||||
this.categories[categoryName] = true
|
||||
}
|
||||
return this
|
||||
}
|
||||
|
||||
/**
|
||||
* train our naive-bayes classifier by telling it what `category`
|
||||
* the `text` corresponds to.
|
||||
*
|
||||
* @param {String} text
|
||||
* @param {String} class
|
||||
*/
|
||||
Naivebayes.prototype.learn = function (text, category) {
|
||||
var self = this
|
||||
|
||||
//initialize category data structures if we've never seen this category
|
||||
self.initializeCategory(category)
|
||||
|
||||
//update our count of how many documents mapped to this category
|
||||
self.docCount[category]++
|
||||
|
||||
//update the total number of documents we have learned from
|
||||
self.totalDocuments++
|
||||
|
||||
//normalize the text into a word array
|
||||
var tokens = self.tokenizer(text)
|
||||
|
||||
//get a frequency count for each token in the text
|
||||
var frequencyTable = self.frequencyTable(tokens)
|
||||
|
||||
/*
|
||||
Update our vocabulary and our word frequency count for this category
|
||||
*/
|
||||
|
||||
Object
|
||||
.keys(frequencyTable)
|
||||
.forEach(function (token) {
|
||||
//add this word to our vocabulary if not already existing
|
||||
if (!self.vocabulary[token]) {
|
||||
self.vocabulary[token] = true
|
||||
self.vocabularySize++
|
||||
}
|
||||
|
||||
var frequencyInText = frequencyTable[token]
|
||||
|
||||
//update the frequency information for this word in this category
|
||||
if (!self.wordFrequencyCount[category][token])
|
||||
self.wordFrequencyCount[category][token] = frequencyInText
|
||||
else
|
||||
self.wordFrequencyCount[category][token] += frequencyInText
|
||||
|
||||
//update the count of all words we have seen mapped to this category
|
||||
self.wordCount[category] += frequencyInText
|
||||
})
|
||||
|
||||
return self
|
||||
}
|
||||
|
||||
/**
|
||||
* Determine what category `text` belongs to.
|
||||
*
|
||||
* @param {String} text
|
||||
* @return {String} category
|
||||
*/
|
||||
Naivebayes.prototype.categorize = function (text) {
|
||||
var self = this
|
||||
, maxProbability = -Infinity
|
||||
, chosenCategory = null
|
||||
|
||||
var tokens = self.tokenizer(text)
|
||||
var frequencyTable = self.frequencyTable(tokens)
|
||||
|
||||
//iterate thru our categories to find the one with max probability for this text
|
||||
Object
|
||||
.keys(self.categories)
|
||||
.forEach(function (category) {
|
||||
|
||||
//start by calculating the overall probability of this category
|
||||
//=> out of all documents we've ever looked at, how many were
|
||||
// mapped to this category
|
||||
var categoryProbability = self.docCount[category] / self.totalDocuments
|
||||
|
||||
//take the log to avoid underflow
|
||||
var logProbability = Math.log(categoryProbability)
|
||||
|
||||
//now determine P( w | c ) for each word `w` in the text
|
||||
Object
|
||||
.keys(frequencyTable)
|
||||
.forEach(function (token) {
|
||||
var frequencyInText = frequencyTable[token]
|
||||
var tokenProbability = self.tokenProbability(token, category)
|
||||
|
||||
// console.log('token: %s category: `%s` tokenProbability: %d', token, category, tokenProbability)
|
||||
|
||||
//determine the log of the P( w | c ) for this word
|
||||
logProbability += frequencyInText * Math.log(tokenProbability)
|
||||
})
|
||||
|
||||
if (logProbability > maxProbability) {
|
||||
maxProbability = logProbability
|
||||
chosenCategory = category
|
||||
}
|
||||
})
|
||||
|
||||
return chosenCategory
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate probability that a `token` belongs to a `category`
|
||||
*
|
||||
* @param {String} token
|
||||
* @param {String} category
|
||||
* @return {Number} probability
|
||||
*/
|
||||
Naivebayes.prototype.tokenProbability = function (token, category) {
|
||||
//how many times this word has occurred in documents mapped to this category
|
||||
var wordFrequencyCount = this.wordFrequencyCount[category][token] || 0
|
||||
|
||||
//what is the count of all words that have ever been mapped to this category
|
||||
var wordCount = this.wordCount[category]
|
||||
|
||||
//use laplace Add-1 Smoothing equation
|
||||
return ( wordFrequencyCount + 1 ) / ( wordCount + this.vocabularySize )
|
||||
}
|
||||
|
||||
/**
|
||||
* Build a frequency hashmap where
|
||||
* - the keys are the entries in `tokens`
|
||||
* - the values are the frequency of each entry in `tokens`
|
||||
*
|
||||
* @param {Array} tokens Normalized word array
|
||||
* @return {Object}
|
||||
*/
|
||||
Naivebayes.prototype.frequencyTable = function (tokens) {
|
||||
var frequencyTable = Object.create(null)
|
||||
|
||||
tokens.forEach(function (token) {
|
||||
if (!frequencyTable[token])
|
||||
frequencyTable[token] = 1
|
||||
else
|
||||
frequencyTable[token]++
|
||||
})
|
||||
|
||||
return frequencyTable
|
||||
}
|
||||
|
||||
/**
|
||||
* Dump the classifier's state as a JSON string.
|
||||
* @return {String} Representation of the classifier.
|
||||
*/
|
||||
Naivebayes.prototype.toJson = function () {
|
||||
var state = {}
|
||||
var self = this
|
||||
STATE_KEYS.forEach(function (k) {
|
||||
state[k] = self[k]
|
||||
})
|
||||
|
||||
var jsonStr = JSON.stringify(state)
|
||||
|
||||
return jsonStr
|
||||
}
|
||||
|
||||
// (original method)
|
||||
Naivebayes.prototype.export = function () {
|
||||
var state = {}
|
||||
var self = this
|
||||
STATE_KEYS.forEach(function (k) {
|
||||
state[k] = self[k]
|
||||
})
|
||||
|
||||
return state
|
||||
}
|
||||
|
||||
module.exports.import = function (data) {
|
||||
var parsed = data
|
||||
|
||||
// init a new classifier
|
||||
var classifier = new Naivebayes()
|
||||
|
||||
// override the classifier's state
|
||||
STATE_KEYS.forEach(function (k) {
|
||||
if (!parsed[k]) {
|
||||
throw new Error('Naivebayes.import: data is missing an expected property: `'+k+'`.')
|
||||
}
|
||||
classifier[k] = parsed[k]
|
||||
})
|
||||
|
||||
return classifier
|
||||
}
|
@ -1,35 +0,0 @@
|
||||
import Post from '../../server/api/models/post';
|
||||
import Core from './core';
|
||||
|
||||
const c = new Core();
|
||||
|
||||
c.init().then(() => {
|
||||
// 全ての(人間によって証明されていない)投稿を取得
|
||||
Post.find({
|
||||
text: {
|
||||
$exists: true
|
||||
},
|
||||
is_category_verified: {
|
||||
$ne: true
|
||||
}
|
||||
}, {
|
||||
sort: {
|
||||
_id: -1
|
||||
},
|
||||
fields: {
|
||||
_id: true,
|
||||
text: true
|
||||
}
|
||||
}).then(posts => {
|
||||
posts.forEach(post => {
|
||||
console.log(`predicting... ${post._id}`);
|
||||
const category = c.predict(post.text);
|
||||
|
||||
Post.update({ _id: post._id }, {
|
||||
$set: {
|
||||
category: category
|
||||
}
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
@ -1,45 +0,0 @@
|
||||
import Post from '../../server/api/models/post';
|
||||
import User from '../../server/api/models/user';
|
||||
|
||||
export async function predictOne(id) {
|
||||
console.log(`predict interest of ${id} ...`);
|
||||
|
||||
// TODO: repostなども含める
|
||||
const recentPosts = await Post.find({
|
||||
userId: id,
|
||||
category: {
|
||||
$exists: true
|
||||
}
|
||||
}, {
|
||||
sort: {
|
||||
_id: -1
|
||||
},
|
||||
limit: 1000,
|
||||
fields: {
|
||||
_id: false,
|
||||
category: true
|
||||
}
|
||||
});
|
||||
|
||||
const categories = {};
|
||||
|
||||
recentPosts.forEach(post => {
|
||||
if (categories[post.category]) {
|
||||
categories[post.category]++;
|
||||
} else {
|
||||
categories[post.category] = 1;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
export async function predictAll() {
|
||||
const allUsers = await User.find({}, {
|
||||
fields: {
|
||||
_id: true
|
||||
}
|
||||
});
|
||||
|
||||
allUsers.forEach(user => {
|
||||
predictOne(user._id);
|
||||
});
|
||||
}
|
Reference in New Issue
Block a user